101 research outputs found

    The electromagnetic field near a dielectric half-space

    Get PDF
    We compute the expectations of the squares of the electric and magnetic fields in the vacuum region outside a half-space filled with a uniform non-dispersive dielectric. This gives predictions for the Casimir-Polder force on an atom in the `retarded' regime near a dielectric. We also find a positive energy density due to the electromagnetic field. This would lead, in the case of two parallel dielectric half-spaces, to a positive, separation-independent contribution to the energy density, besides the negative, separation-dependent Casimir energy. Rough estimates suggest that for a very wide range of cases, perhaps including all realizable ones, the total energy density between the half-spaces is positive.Comment: Latex2e, IOP macros, 15 pages, 2 eps figure

    On the importance of testing gravity at distances less than 1cm

    Get PDF
    If the mechanism responsible for the smallness of the vacuum energy is consistent with local quantum field theory, general arguments suggest the existence of at least one unobserved scalar particle with Compton wavelength bounded from below by one tenth of a millimeter. We show that this bound is saturated if vacuum energy is a substantial component of the energy density of the universe. Therefore, the success of cosmological models with a significant vacuum energy component suggests the existence of new macroscopic forces with range in the sub-millimeter region. There are virtually no experimental constraints on the existence of quanta with this range of interaction.Comment: 9 pages TeX, 2 eps figures, uses mtexsis.tex and epsf.tex. Entry in 1996 Gravity Research Foundation essay competition. To be published in the Journal of General Relativity and Gravitatio

    How Multivalency controls Ionic Criticality

    Full text link
    To understand how multivalency influences the reduced critical temperatures, Tce (z), and densities, roce (z), of z : 1 ionic fluids, we study equisized hard-sphere models with z = 1-3. Following Debye, Hueckel and Bjerrum, association into ion clusters is treated with, also, ionic solvation and excluded volume. In good accord with simulations but contradicting integral-equation and field theories, Tce falls when z increases while roce rises steeply: that 80-90% of the ions are bound in clusters near T_c serves to explain these trends. For z \neq 1 interphase Galvani potentials arise and are evaluated.Comment: 4 pages, 4 figure

    Spectral representation of the Casimir Force Between a Sphere and a Substrate

    Full text link
    We calculate the Casimir force in the non-retarded limit between a spherical nanoparticle and a substrate, and we found that high-multipolar contributions are very important when the sphere is very close to the substrate. We show that the highly inhomegenous electromagnetic field induced by the presence of the substrate, can enhance the Casimir force by orders of magnitude, compared with the classical dipolar approximation.Comment: 5 page + 4 figures. Submitted to Phys. Rev. Let

    Metallic properties of the Ge(001) surface

    Get PDF

    Effects related to spacetime foam in particle physics

    Get PDF
    It is found that the existence of spacetime foam leads to a situation in which the number of fundamental quantum bosonic fields is a variable quantity. The general aspects of an exact theory that allows for a variable number of fields are discussed, and the simplest observable effects generated by the foam are estimated. It is shown that in the absence of processes related to variations in the topology of space, the concept of an effective field can be reintroduced and standard field theory can be restored. However, in the complete theory the ground state is characterized by a nonvanishing particle number density. From the effective-field standpoint, such particles are "dark". It is assumed that they comprise dark matter of the universe. The properties of this dark matter are discussed, and so is the possibility of measuring the quantum fluctuation in the field potentials.Comment: 18 pages, minor corrections added to the published varian

    Casimir Energy for Spherical boundaries

    Get PDF
    Calculations of the Casimir energy for spherical geometries which are based on integrations of the stress tensor are critically examined. It is shown that despite their apparent agreement with numerical results obtained from mode summation methods, they contain a number of serious errors. Specifically, these include (1) an improper application of the stress tensor to spherical boundaries, (2) the neglect of pole terms in contour integrations, and (3) the imposition of inappropriate boundary conditions upon the relevant propagators. A calculation which is based on the stress tensor and which avoids such problems is shown to be possible. It is, however, equivalent to the mode summation method and does not therefore constitute an independent calculation of the Casimir energy.Comment: Revtex, 7 pages, Appendix added providing details of failure of stress tensor metho

    Matter-field theory of the Casimir force

    Full text link
    A matter-field theory of the Casimir force is formulated in which the electromagnetic field and collective modes of dielectric media are treated on an equal footing. In our theory, the Casimir force is attributed to zero-point energies of the combined matter-field modes. We analyze why some of the existing theories favor the interpretation of the Casimir force as originating from zero-point energies of the electromagnetic field and others from those of the matter.Comment: 12pages, 1 Postscript figur

    New features of the thermal Casimir force at small separations

    Full text link
    The difference of the thermal Casimir forces at different temperatures between real metals is shown to increase with a decrease of the separation distance. This opens new opportunities for the demonstration of the thermal dependence of the Casimir force. Both configurations of two parallel plates and a sphere above a plate are considered. Different approaches to the theoretical description of the thermal Casimir force are shown to lead to different measurable predictions.Comment: 5 pages, 3 figures, to appear in Phys. Rev. Let

    Repulsive Casimir forces

    Get PDF
    We discuss repulsive Casimir forces between dielectric materials with non trivial magnetic susceptibility. It is shown that considerations based on naive pair-wise summation of Van der Waals and Casimir Polder forces may not only give an incorrect estimate of the magnitude of the total Casimir force, but even the wrong sign of the force when materials with high dielectric and magnetic response are involved. Indeed repulsive Casimir forces may be found in a large range of parameters, and we suggest that the effect may be realized in known materials. The phenomenon of repulsive Casimir forces may be of importance both for experimental study and for nanomachinery applications
    • …
    corecore